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Abstract Hsp27 and aB-crystallin are molecular chaperones
that are constitutively expressed in several mammalian cells, par-
ticularly in pathological conditions. These proteins share func-
tions as diverse as protection against toxicity mediated by
aberrantly folded proteins or oxidative-inflammation conditions.
In addition, these proteins share anti-apoptotic properties and
are tumorigenic when expressed in cancer cells. This review sum-
marizes the current knowledge about Hsp27 and aB-crystallin
and the implications, either positive or deleterious, of these pro-
teins in pathologies such as neurodegenerative diseases, myopa-
thies, asthma, cataracts and cancers. Approaches towards
therapeutic strategies aimed at modulating the expression and/
or the activities of Hsp27 and aB-crystallin are presented.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Hsp27 and aB-crystallin: old and new

Heat shock proteins (Hsps) or stress proteins have in com-

mon a stimulated synthesis in response to heat shock or when

the environment of a cell becomes deleterious and alters pro-

tein folding. In cells exposed to heat shock, Hsps act as molec-

ular chaperones that counteract the formation of aberrantly

folded polypeptides and allow their correct refolding during

stress recovery. In addition of being expressed in stressed cells,

some Hsps show a basal level of constitutive expression and

act as in-house chaperone towards several fundamental cellu-

lar processes, such as protein intracellular transport, cytoskel-

etal architecture, mutations masking, translation regulation,

intracellular redox homeostasis or protection against sponta-

neous or stimulated programmed cell death.

Mammalian Hsp27 (HspB1) and aB-crystallin (HspB5) be-

long to the family of small heat shock proteins (sHsps). In hu-

man, 10 different sHsps have been characterized but only few

of them, as Hsp27, Hsp22 and aB-crystallin, are true heat

shock proteins that display an enhanced synthesis in response
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to stress. Up until now, the more studied sHsps have been

mammalian Hsp27 and aB-crystallin. sHsps are characterized

by low molecular masses (12–43 kDa) and a conserved C-ter-

minal domain (the a-crystallin domain, see Fig. 1). sHsps also

contain a WDPF domain in their N-terminal part and a non

conserved flexible domain which constitutes the C-terminal

part of the proteins. sHsps share the property to form globular

oligomeric structures that are characterized, in mammalian

cells, by molecular masses ranging from 50 to about 700–

800 kDa. The dynamic organization of sHsps oligomers ap-

pears to be a crucial factor which controls the activity of these

proteins. We still do not have a good knowledge of the struc-

tural organization of sHsps. This is mainly due to the heterog-

enous size and dynamic properties of sHsps oligomers and of

their ability to form hetero-complexes with other members of

the sHsps family. An intriguing property of some sHsps, such

as Hsp27 and aB-crystallin, concerns their ability to be phos-

phorylated and therefore under the control of several trans-

duction pathways. Indeed, both proteins show rapid

phosphorylation that modulates their activities in response to

a wide variety of stimuli [1,2]. Both proteins have phosphory-

lated serine sites in the N-terminal part of the polypeptides, in

the WDPF domain [2] and close to the a-crystallin domain.

Hsp27 is phosphorylated at serines 15, 78 and 82 by mito-

gen-activated protein kinases associated protein kinases

(MAPKAP kinases 2,3) which are themselves activated by

phosphorylation by MAP p38 protein kinase [3,4] (see

Fig. 1). As Hsp27, aB-crystallin is phosphorylated at three ser-

ine site corresponding to residues 19, 45 and 59. At least two

pathways are implicated in the aB-crystallin phosphorylation:

the MAPKAPK2 kinases are responsible of the phosphoryla-

tion of serine 59 while serine 45 appears under the control of

p42/p44 MAPKinase. The kinase responsible of the phosphor-

ylation of serine 19 is still not known. Hence, Hsp27 phosphor-

ylation can be modulated by signals as diverse as those

mediated by growth factors, differentiating agents, tumor

necrosis factor, oxidative stress or heat shock [5,6]. In the case

of a-crystallin, a recent study has shown that disorganization

of microfilaments or microtubules networks results in the acti-

vation of convergent pathways to MAPK p38 [1]. At least in

the case of Hsp27, phosphorylation was demonstrated to result

in a decrease size of the oligomers [7].

In addition of being overexpressed in stress conditions,

Hsp27 and aB-crystallin share the ability of having a tissue/cell
blished by Elsevier B.V. All rights reserved.



Fig. 1. Properties of human Hsp27 and aB-crystallin. (A) Organization of human Hsp27 and aB-crystallin protein sequences. Light box: conserved
region; black box: alpha crystallin domain; gray box: WDPF domain; ΛΛΛΛΛ: flexible domain; P: phosphorylated serine residues. Amino acids
are indicated. Position 137 in Hsp27 sequence corresponds to the only cysteine residue in the protein sequence. Its deletion abolishes dimer formation
and knocks out Hsp27 protective activity. Positions of point mutations that are responsible of pathologies (see Table 2) are indicated by arrows.
464delCT: frame-shift mutant. The resulting mutant is modified from aa 155 and is truncated of 13 residues compared to wild type protein. 450delA:
frame-shift mutant. The resulting mutant is modified from aa160 to aa184. This protein is larger than wild type polypeptide (175aa). (B) Biochemical
properties of Hsp27. Stress favors the formation of large oligomers associated with unfolded polypeptides while phosphorylation does the reverse.
The system is therefore in equilibrium. The formation of small oligomers may be required to bind unfolded proteins that are then stored at the level of
the large oligomers. Phosphorylation may also favor the recycling of the large oligomers. Yellow circles indicate nonphosphorylated Hsp27 and red
circle phosphorylated Hsp27. Large non-phosphorylated oligomers of sHsp (>300 kDa) have greater potentiality to protect the cell through their
ability to display chaperone activity [6]. In contrast, small unphosphorylated oligomers of Hsp27 may act at the level of F-actin polymerization/
depolymerization [32].
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specific expression in the absence of stress which can be de-

tected in the healthy adults as well as during the development

of the organisms. In mammals, aB-crystallin is a major poly-

peptide of the eye lens where it is associated with the closely

related aA-crystallin (HspB4) to form large hetero-oligomeric

structures. In mice and rats, aB-crystallin is also constitutively

expressed in tissues with high rates of oxidative metabolism,

including, the heart, type I and type IIa skeletal muscle fibers,

brain and oxidative regions of the kidney. Hsp27 tissue-specific

expression resembles that of aB-crystallin. However, different

levels of expression of these two proteins are often detected.

The significance of the constitutive expression of these Hsps

is probably linked to protection of the cells against stress or

to a specific function in a particular tissue. This review summa-

rizes the current knowledge about Hsp27 and aB-crystallin as

well as the significance of the overexpression of these polypep-

tides in several pathological situations. Collectively, these
observations lead to the conclusion that Hsp27 and aB-crystal-

lin are major targets for the development of future therapeutic

strategies against pathologies as diverse as neurodegenerative

diseases, myopathies, asthma, cataracts and cancers.

Analysis of Hsp27 and aB-crystallin oligomers has revealed

that these structures are in a dynamic equilibrium. It was then

shown that the high molecular weight oligomeric structures

formed by Hsp27 and aB-crystallin bear an ATP-independent

chaperone activity and that phosphorylation induces modifica-

tions in oligomer size and chaperone-like activity [8]. For

example, in heat shock treated cells which are prone to accu-

mulate misfolded proteins, the large unphosphorylated oligo-

mers of Hsp27 act as tanks that store misfolded polypeptides

until they are either processed for refolding by ATP-dependent

chaperones (i.e. Hsp70 and co-chaperones) [9] or degraded by

the proteasome [10]. Recent studies of a B-crystallin have re-

vealed that the b3 sequence of the a-crystallin domain (aa



Table 1
Multiple functions of aB-crystallin and/or Hsp27 and the corresponding interactions with (or functional modulation of) protein or peptide targets

Function(s) Targets

Lens transparency and protection aA-crystallin and other crystallin proteins
Heart protection Titin, Hsp20
Cytoskeletal architecture and protection F-actin

Intermediate filament proteins (desmin, vimentin, GFAP, neurofilaments, filensin, phakinin, lamin)
Microtubules and microtubule-associated proteins

Apoptosis resistance Pro-caspase 3, cytochrome c, Smac/Diablo, Akt, DAXX, STAT3, Bcl-xs, Bax, P53
Ubiquitin–proteasome system Fbx4, C8/a7 subunit of 20S proteasome, eIF4F and eIF4G complex, ubiquitin
Cell cycle regulation Cyclin D1, p27kip1, P53
Redox homeostasis Glutathione, G6PDH
Protein intracellular transport Microtubule, SMN, neurofilaments
Stress signalling pathway P38 cascade, I Kappa B kinase
Hormone signalling pathway ERb (Estrogen cascade), hGMEB1 (glucocorticoı̈d hormones cascade)
Unknown nuclear function(s) SMN, SC35
Unknown cytosolic function(s) aB-crystallin, Hsp20, Hsp22, Hsp27
Pathological-related misfolded proteins Desmin, GFAP, neurofilaments, ZASP, filamin C, myotiline, parkin, a-synuclein, prion protein,

tau, b-amyloid, huntingtin, serpin, SOD, P150 dynactin, aA-crystallin, aB-crystallin, Hsp20,
Hsp22, Hsp27

Virus NS5A protein from Hepatitis C
Immune response CD10, b2-microbulin
Unknown function in Sertoli cells PASS 1
Golgi architecture GM130

GFAP, glial fibrillary acidic protein; DAXX, death domain-associated protein 6; STAT3, signal transducer and activator of transcription 3; Fbx4, F-
box only protein 4; eIF4F, eukaryotic translation initiation factor 4F; eIF4G, eukaryotic translation initiation factor 4G; G6PDH, glucose-6-
phosphate dehydrogenase; SMN, survival motor neuron protein; SOD, superoxide dismutase; ER, estrogen receptor; SC35, splicing factor;
hGMEB1, human glucocorticoid modulatory element-binding protein 1; NS5A, non-structural protein 5A; ZASP, LIM domain-binding protein 3;
PASS 1, protein associated with small stress protein 1. GM130, golgi matrix-protein 130.
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73–85) [11] may represent the interacting site with unfolded

polypetide targets and the b3-b8-b9 surface of the alpha crys-

tallin core domain may be an interface for complex assembly

and chaperone activity [12]. Moreover, the N- and C-termini

of human aB-crystallin appear important for the recognition,

selection, and solubility of substrate proteins [13]. Hsp27 and

aB-crystallin also share the ability to participate in the

so-called ‘‘protein triage’’ that occurs in cells recovering from

stress or committed to differentiate. Indeed, Hsp27 and

aB-crystallin modulate the ubiquitin–proteasome pathway

[14,15] (see Table 1) and are essential for proper disassem-

bly–assembly of protein complexes to prevent undesirable

interactions and aggregation [16,17]. In this respect, the lack

of Hsp27 expression during early differentiation induces aber-

rant cell differentiation [16] or massive apoptosis [18–20].

Moreover, tissue-specific hetero-oligomeric structures of sHsps

have been described [16] suggesting structurally independent

sHsps chaperone complexes with distinct molecular targets

[21]. Hence, these observations favor the hypothesis that

highly modulable sHsp structural networks exist in the cell

that rapidly react to cope with tissue-specific stress- or differen-

tiation-induced protein damages and/or protein complexes

reorganization.

An intriguing function of Hsp27 and aB-crystallin is the

ability to increase the resistance of cells to oxidative injuries

[22]. The phenomenon is not restricted to cell cultures and

has been observed in whole animals [23]. Hsp27 and aB-crys-

tallin expression correlates with decreased levels of reactive

oxygen species (ROS) and nitric oxide (NO�) [6,24–26]. Conse-

quently, in cells exposed to oxidative challenges, sHsps expres-

sion reduces lipid peroxidation, protein oxidation and F-actin

architecture disruption [24–27]. These Hsps also uphold the

mitochondrial membrane potential (DWm) level [24,28]; a phe-

nomenon which provides the stressed cells with abundant ATP

production that favors the activity of chaperones. The antiox-
idant activity of Hsp27 and aB-crystallin was found to depend

on reduced glutathione [25]. The phenomenon probably de-

pends on the upregulation of glucose-6-phosphate dehydroge-

nase (G6PDH) [23,24] (Table 1), the key enzyme that provides

the reducing power of the cell by reducing NADP+ in

NaDPH(H)+. In addition, recent results have shown that

Hsp27 [29,30] or aB-crystallin (our unpublished information)

expression decreases iron intracellular levels; a phenomenon

which subsequently interferes with the formation, through

iron-dependent Fenton reaction, of the potent macromolecules

oxidizing hydroxyl radical (OHO) [26]. As in the case of cells

exposed to heat shock, the active form of Hsp27 appears asso-

ciated with the large unphosphorylated oligomers of the pro-

tein [6,31].

Other functions have been assigned to Hsp27 and aB-crys-

tallin that depend on the structural organization of these poly-

peptides. One example is the control of F-actin cytoskeletal

integrity mediated by the small oligomers of Hsp27 [32,33].

This activity plays a crucial role in cells exposed to heat shock

or oxidative stress because of the well-known ability of these

stress to collapse F-actin cytoskeleton. Hsp27 was also found

to regulate neutrophil chemotaxis and exocitosis through actin

reorganization [34,35]. Moreover, a decrease in the level of

expression of Hsp27 impairs growth and cytoskeletal organiza-

tion [36]. These observations confirm that these polypeptides

are major regulators of actin polymerization-depolymerization

process. Moreover, Hsp27 and aB-crystallin also appear to

bind and stabilize microtubules [1,37–39]. Taken together with

the fact that aB-crystallin is a well known stabilizer of interme-

diate filaments [40,41], these observations enlighten the major

role played by these Hsps in cytoskeletal architecture homeo-

stasis.

Increased cellular resistance to several pro-apoptotic agents

or conditions is observed in cells expressing high loads of

Hsp27 [42–44]. On the opposite, inhibition of Hsp27 expression



Fig. 2. Anti-apoptotic protective activity of constitutively expressed Hsp27 in HeLa cells. HeLa cells are human cancerous cells of the cervix that
constitutively express high levels of Hsp27. These cells were transiently transfected with DNA vectors encoding either mismatch RNA (a) or RNAi
Hsp27 sequences (b) (according to [104]). Two days after transfection, cells were either kept untreated or treated for 4 h with 0.2 lM of the kinase
inhibitor and apoptosis inducer staurosporine. Hsp27 immunoblots (A) and phase contrast pictures (B) are presented. Note the drastic increase in cell
death morphology induced by Hsp27 withdrawal. This leads to the conclusion that Hsp27 enhances the deleterious apoptotic resistance of these
cancer cells. Bar: 15 lm.
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sensitizes cells to apoptosis [45–48] (see Fig. 2). These phenom-

ena result of the interaction of Hsp27 with several crucial apop-

totic factors (see Table 1). For example, towards the intrinsic

apoptotic pathway, Hsp27 acts upstream of mitochondria to-

wards the signals that trigger the release of cytochrome c [45]

or Smac/DIABLO [49] from mitochondria. In this respect,

the ability of Hsp27 to protect F-actin network integrity [45]

may play a crucial role. Hsp27 also acts down-stream of

mitochondria at the level of cytochrome c and apoptosome

[50]. The third site of action of this protein is at the level of

pro-caspase 3 activation [51]. At the level of the Fas receptor

pathway, Hsp27 was described to negatively interfere through

an interaction with DAXX [52]. Hsp27 also binds and inhibits

cellular factors involved in oncogenic signaling pathways,

such as signal transducer and activator of transcription-3

(STAT3) [53]. This transcription factor is constitutively active

in most tumors and controls the expression of key genes

involved in cell transformation or apoptosis inhibition, such

as those encoding Bcl-xL and survivin. An other important

factor modulated by Hsp27 is Akt [54]. In vivo, Hsp27 anti-

apoptotic property has been demonstrated [55,56]. Moreover,

the transient expression of Hsp27 during cell differentiation is

also related to a protection against apoptosis [18,43,57]. Con-

cerning the structural organization of Hsp27 in cells exposed

to apoptotic stimuli, the major information available today is

that the large oligomers of Hsp27 inhibit in vitro caspase acti-

vation [58], hence suggesting a link with the chaperone activity

of the protein.

Concerning aB-crystallin, its overexpression confers pro-

tection against a large panel of apoptotic stimuli while its

silencing sensitizes cells to apoptosis [20,42,59,60]. Moreover,

aB-crystallin negatively regulates apoptosis during myogenic

differentiation [20]. Several steps in the apoptotic pathway

are modulated by aB-crystallin. This protein has been shown

to bind pro-apoptotic Bax, Bcl-xS and P53 polypeptides (see

Table 1) and to prevent their translocation to the mitochondria

[61,62]. Downstream of mitochondria, aB-crystallin counter-

acts the activation of pro-caspase-3. Interestingly, phosphory-
lation of aB-crystallin at the level of serine 59 appears

sufficient to provide maximal protection of cardiomyocytes

against apoptosis [63].
2. Protein conformation and inflammation related diseases

In vivo, Hsp27 and aB-crystallin are abundantly produced

in response to various types of stress in cardiac and skeletal

muscles as well as in the brain. This suggests that, in these or-

gans, these sHsps act as molecular chaperones suppressing the

aggregation of specific client polypeptides. For example, trans-

genic mice overexpressing Hsp27 are strongly protected

against myocardial infarction and cerebral ischemia [56,64].

Moreover, aB-crystallin and Hsp27 are often upregulated

and accumulate into inclusion bodies in many protein confor-

mation diseases. For instance, aB-crystallin and/or Hsp27

accumulate in Rosenthal fibers of Alexander disease, cortical

Lewy bodies, Alzheimer disease plaques, neurofibrillary tan-

gles as well as in synuclein deposit associated to Parkinson dis-

ease or myopathy-associated inclusion body [65]. The exact

reason for the frequent association of Hsp27 and/or aB-crys-

tallin with these structures is probably linked to the chaperone

activity of these sHsps. Indeed, molecular chaperones are

known to provide a first line of defence against misfolded,

aggregation-prone proteins probably because of their ability

to modulate the earliest aberrant protein interactions that trig-

ger pathogenic cascades. For example, it has been reported

that sHsps protect against alpha-synuclein [66], huntingtin

[26,67,68], amyloid and desmin mutants induced aggregation

and/or toxicity.

Other studies have reported that aB-crystallin is present in

reactive glia in Creutzfeldt-Jakob disease and a high preva-

lence of anti-alpha-crystallin antibodies has been described in

multiple sclerosis which correlates with severity and activity

of the disease. Upregulation of Hsp27 has also been observed

in a transgenic model of ALS. The importance of Hsp27 in

neuropathologies was further confirmed by the discovery of



Table 2
Mutations in aB-crystallin and Hsp27 and the corresponding pathologies

sHsps Mutations Associated pathologies Ref.

aB-crystallin R120G Myofibrillar myopathy, cardiomyopathy, cataract (1)
Q151X Myofibrillar myopathy (2)
464delCT Myofibrillar myopathy (2)
R157H Cardiomyopathy (3)
P20S Cataract (4)
D140N Cataract (5)
450delA Cataract (6)

Hsp27 R127W Distal hereditary motor neuropathy (7)
Charcot-Marie-Tooth type 2F (9)

S135F Distal hereditary motor neuropathy Charcot-Marie-Tooth type 2F (7)
R136W Charcot-Marie-Tooth type 2F (7)
T151I Distal hereditary motor neuropathy (7)
P182L Distal hereditary motor neuropathy (7)
P182S Distal hereditary motor neuropathy (10)

Refs: (1) [71]. (2) [72]. (3) [78]. (4) [77] (5) Berry, V. et al. (2001) Am. J. Hum. Genet. 69, 1141–5. (6) Liu, Y. et al. (2006) Invest. Ophthalmol. Vis. Sci.
47, 1069–1075. (7) Evgrafov, O.V. et al. (2004) Nat. Genet. 36, 602–606. (8) Tang, B. et al. (2005) Arch. Neurol. 62, 1201–1207. (9) Liu, X.M. et al.
(2005) Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 22, 510–513. (10) Kijima, K., Numakura, C., Goto, T., Takahashi, T., Otagiri, T., Umetsu, K. and
Hayasaka, K. (2005) J. Hum. Genet. 50, 473–476.
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human mutations in the Hsp27 encoding gene in families

associated with inherited peripheral neuropathies [69] and ax-

onal Charcot-Marie-Tooth disease [70] (see Table 2). These

motor neuropathies are caused by premature axonal loss, neu-

ronal death and subsequent degeneration. Moreover, the

mutations are associated with a decreased ability of Hsp27

to promote neuronal survival compared to the wild type pro-

tein. Taken together, these studies suggest that, in animal mod-

els of human diseases, Hsp27 and aB-crystallin are potent

suppressors of neurodegeneration.

Other protein conformation diseases associated to Hsp27

and/or aB-crystallin expression are myopathies and alcoholic

liver diseases characterized by the presence of Mallory bodies.

Concerning the myopathies, recent studies have revealed the

importance of aB-crystallin towards desmin network (see Ta-

ble 2). Indeed, one major target of the chaperone activity asso-

ciated to aB-crystallin appears to be type III intermediate

filaments [40,41]. The discovery in 1998 of a missense mutation

in aB-crystallin gene, changing arginine 120 to glycine

(R120G), responsive of a myofibrillar myopathy associated

with cardiomyopathy and cataract [71], confirmed the impor-

tance of aB-crystallin in these diseases. Recently, two novel

mutations leading to myofibrillar myopathies (Q151X and

464delCT) have been identified in the terminal part of the

aB-crystallin coding sequence [72]. At the exception of the re-

port describing the identification of these new mutants, the

published studies on aB-crystallinopathies concern the

R120G mutant. It is now accepted that aB-crystallinopathies

result from the misfolding and progressive aggregation of

mutated aB-crystallin to which subsequently associate desmin

filaments to form aB-crystallin/desmin/amyloid positive aggre-

somes [73,74]. These aggregates can by themselves be toxic,

inhibiting the ubiquitin–proteasomal system of protein degra-

dation [75] and causing deficits in mitochondrial function [76].

aB-crystallinopathies are a special case of protein conforma-

tion disease in which the destabilizing mutations at the

origin of the disorder occurs in a molecular chaperone

which is itself potentially involved in the protein quality con-

trol of the cell. Three mutations in aB-crystallin gene (P20S,

464delCT and D140N) are also responsive for dominant
cataract [77] and two mutations (R157H and G154S) for

cardiomyopathy [78]. At the biochemical level, mutations in

aB-crystallin have been found to modify the properties of

aB-crystallin such as its oligomerization and in vitro chaper-

one-like activity [79] and to increase its affinity to desmin

[80]. Moreover, the ability of aB-crystallin to interact with

members of the apoptotic cascade, cytoskeletal polypeptides

or with the other sHsps may also be modified.

Hsp27 and aB-crystallin are also involved in inflammation

diseases. For example, these proteins interferes with TNFa
signaling pathway through their ability to protect against oxi-

dative stress [81] and through modulation of TAK-1 activity

[82]. An other example is given by the absence of colonic

inflammation seen in the majority of individuals infected with

the parasite Entamoeba histolytica which is related to the abil-

ity of Hsp27 to suppress NF-jB activation through an inter-

action with IKK-a and IKK-b [83]. Moreover, recent reports

have shown that Hsp27 is needed for the activation by inter-

leukin (IL)-1 of TAK1 and downstream signalling by p38

MAPK, JNK and their activators (MKK-3, -4, -6, -7) and

IKKb [82]. These observations suggest crucial roles of

Hsp27 and aB-crystallin in the control of inflammatory pro-

cesses. Among pathologies where the anti-oxidative potential

of Hsp27 is crucial, one can cite airway inflammation associ-

ated with asthma which is characterized by the damage of the

bronchial epithelium. In this respect, we have observed that

an increased Hsp27 expression in the epithelium of asthmatic

subjects generates a protection against the oxidative stress in-

duced by the chronic inflammatory state of this tissue (see

Fig. 3) [84].
3. Cancer

High levels of Hsp27 constitutive expression have been de-

tected in several cancer cells, particularly those of carcinoma

origin [85,86]. Recently, the number of reports dealing with

Hsp27 in cancer pathologies has grown exponentially. In addi-

tion to its presence in breast, ovary and colon cancers, Hsp27

has recently been detected in liver, kidney, lung (non-small



Fig. 3. Beneficial protective effect of Hsp27 expression in bronchial epithelial cells from asthmatic patients. Hsp27 expression and TUNEL
immunoreactivity in bronchial epithelial cells of a normal (A) subject and an asthmatic (B–D) patient. Cells that express Hsp27 show a red
immunostaining as the result of the Hsp27 immunoreactivity. TUNEL-positive cells are characterized by a brown staining of the nuclei. (A) Area of
intact epithelium of a bronchial biopsy taken from a normal subject showing no immunoreactivity for Hsp27 and for TUNEL. (B) Area of damaged
epithelium of a bronchial biopsy taken from an asthmatic subject with desquamated epithelial cells which are not immunoreactive for Hsp27 but
show a positivity for the TUNEL technique. (C) Wide area of fragile epithelium not immunoreactive for Hsp27 showing a nuclear TUNEL staining
of many bronchial epithelial cells. (D) Area of intact epithelium showing a strong immunostaining for Hsp27, and a complete lack of nuclear staining
due to the TUNEL technique. These observations support the beneficial role of Hsp27 in asthma. Indeed, desquamative cells are apoptotic and
devoid of Hsp27 while cells that express Hsp27 are not apoptotic and do not desquamate. See [84] for further informations.
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cells) and prostate cancers. Moreover, experimental ap-

proaches performed in rodents have enlightened the tumori-

genic potential of Hsp27 expression [87]. Hence, Hsp27 is

supposed to increase the ability of some cancer cells to resist

to and evade from the apoptotic processes mediated by the im-

mune system. The large oligomers which bear the chaperone-

like activity are also responsible for the tumorigenic activity

of Hsp27 [58]. Concerning this issue, it cannot be excluded that

Hsp27 large oligomers may act as Hsp90 and bind specific cli-

ent proteins that participate in the tumorigenic and metastatic

processes.

aB-Crystallin constitutive expression has been detected in

gliomas, prostate cancer, oral squamous cell carcinomas, renal

cell carcinomas, head and neck cancer. A normal high level of

aB-crystallin has also been detected in basal-like breast carci-

nomas and preinvasive ductal carcinoma that correlated with

poor clinical outcome of the patients. Recently, a pathological

role of aB-crystallin has again been reported in breast cancer

diseases, hence suggesting that this protein acts as an oncopro-

tein [88]. Neoplastic changes and invasive properties of breast

cells are inhibited by phosphorylation of aB-crystallin [89]. In-

deed, serine 59 phosphorylation reduces the oligomerization

and anti-apopototic activities of aB-crystallin [90,91]. It can

therefore be concluded that, as for Hsp27, the large oligomers

of aB-crystallin may contribute to the aggressive behavior of

cancer cells. However, the differential expression of aB-crystal-

lin and Hsp27 reported in anaplastic thyroid carcinomas and

in brain cancer suggests different involvement of these sHsps

in these pathologies [92,93].

The expression of Hsp27 and aB-crystallin is also associated

to other problems in cancer biology. First, high levels of Hsp27

are observed in metastatic tissues compared to non metastatic

tissues suggesting that this protein plays a key role in metasta-

sis formation [94]. aB-crystallin expression is correlated with

lymph node involvement in breast carcinomas resulting in a

shorter survival. Second, Hsp27 and aB-crystallin expression

is associated with cellular resistance to cytostatic anticancerous

drugs used in the clinic [95,96]. In addition, some of these

drugs, particularly cisplatin [97], vincristine and colchicine

[98] enhance Hsp27 and/or aB-crystallin expression. Collec-

tively, these phenomena impair the efficiency of the clinical

treatments using chemotherapeutic agents.
4. Hsp27 and aB-crystallin as therapeutic targets?

Hsp27 and aB-crystallin are potent protective factors of cells

in which the disease-causing proteins are prone to aggregate

and form large inclusions. In spite of the presence of Hsp27

and/or aB-crystallin, these diseases usually result in excessive

cell death (Fig. 4). One therapeutic option could be the

enhanced expression of the corresponding wild type protein.

Unfortunately, such an approach is not feasible nowadays.

Similarly, this approach can not be used to treat pathologies

caused by Hsps mutations. Another approach to the develop-

ment of therapeutic intervention for these diseases has been

to identify chemical compounds that reduce the size or number

of inclusions. However, recent results suggest that inclusion

formation may in fact be beneficial to the cell to get rid of the

mutated protein through autophagy [99]. However, inclusion

formation or aggregation of metal-binding proteins (such as

a-synuclein, Alzheimer b-amyloid peptide, PrP106-126 prion

or polyQ mutants of Huntingtin) is a risky process since it

can generate deleterious oxidative stress [67,100]. Hence, using

available cellular models, studies will have to be performed to

identify compounds that promote oxidative stress free inclusion

formation as a therapeutic approach for neurodegenerative dis-

eases caused by protein misfolding [101]. These studies will

have to test whether compounds (still to be discovered, such

as RNA/peptide aptamers or chemical chaperones, see below)

that modulate Hsp27 and/or aB-crystallin functions are active

towards the deleterious damages induced by these diseases.

In the myopathy and cataract research field, it is reasonable

to assume that prevention of the formation of aggregates in-

duced by aB-crystallin myopathy- and cataract-associated mu-

tants may be an efficient strategy to inhibit the development of

the disease (Fig. 4). For example, it is well known that the ces-

sation of the expression of aB-crystallin R120G mutant in

symptomatic mice improved cardiac function and rescued

these animals from premature death [73]. Towards these

pathologies, specific peptide/RNA aptamers or chemical chap-

erones that interfere with the mechanism leading to the aggre-

gation of the mutated aB-crystallin but not with the wild type

protein functionality should be researched and tested. A simi-

lar approach can be proposed towards the pathologies induced

by mutations of Hsp27.



Fig. 4. Role of Hsp27 and aB-crystallin in normal and pathological cells. (A) In normal cells, Hsp27 and/or aB-crystallin participate in cytoskeleton,
redox state and protein folding homeostasis. These proteins are also involved in the protection of cells in case of stress. In this respect, these sHsps
interfere with spontaneous or induced apoptosis. (B) In pathological cells, Hsp27 and/or aB-crystallin have beneficial effects towards protein
conformation and inflammation related diseases. In contrast, these proteins can have pernicious effects through their ability to protect cancer cells
against the immune system- or drug-mediated death. Mutations in Hsp27 and/or aB-crystallin are responsive of the development of pathologies such
as, cataracts, myofibrillars myopathies, cardiomyopathies, Charcot-Marie-Tooth (CMT) disease and motor-neuronal neuropathies, such as Distal
Hereditary motor neuronopathy (dHMN).
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Towards inflammation and asthma, compounds that stimu-

late the anti-oxidative activity of Hsp27 and aB-crystallin

should be actively researched. Once again specific peptides or

RNA aptamers or drugs that maintain these proteins in the

form of large oligomers may stimulate their chaperone and

anti-oxidative properties.

In the cancer field, Hsp27 and aB-crystallin have negative

activities and should be either eliminated or their activity im-

paired (Fig. 4). Indeed, up until today, no report has described

a positive role of these proteins in cancer cells, such as better

tumor antigen-recognition at the cell surface as already shown

in the case of Hsp70 [102,103]. Hence, experiments have been

performed using anti-sense or nucleotide-based therapies with

aim to inhibit Hsp27 and aB-crystallin expression. This ap-

proach sensitizes cancer cells to apoptotic inducers [45] and

anticancer drugs and reduces the tumorigenic potential of

bladder and prostate cancer cells [46,48]. The decrease in tu-

mors aggressivity mediated by second generation of RNAi

molecules, such as OGX 437 (Oncogenex Inc.), appears to be

linked to loss of the anti-apoptotic protection mediated by

Hsp27 [48]. Moreover, the degradation of putative and still un-

known tumorigenic and/or metastatic client proteins that may

bind Hsp27 should also be considered. As mentioned above,

peptide/RNA aptamers or chemical chaperones that bind spe-

cific structural organizations of Hsp27 or aB-crystallin could

be an alternative approach to reduce the tumorigenic and met-

astatic activities of these proteins. Similarly aptamers or drugs

that modulate the anti-oxidant potential of these proteins (see

above) may prove useful to block Hsp27 ability to counteract

the killing efficiency of redox state dependent anti-cancer ther-

apeutic drugs, such as 17AAG, or physical challenges such as

X-rays irradiation.
5. Conclusions and perspectives

The number of reports that describe the importance of

Hsp27 and aB-crystallin in pathologies is increasing exponen-
tially and the need of drugs that modulate the activity of these

chaperones is rising fast. The discovery of drugs will be a chal-

lenge since the tri-dimensional structures of human Hsp27 and

aB-crystallin is still not known because of the difficulty to ob-

tain stable crystals of these oligomeric proteins for X-ray anal-

ysis. In spite of these considerations, an astonishing array of

strategies to either stimulate the beneficial properties or to af-

fect the pathological roles played by these proteins is fast

emerging. For example, the discovery of specific peptides that

recognize the oligomeric forms of Hsp27 or aB-crystallin may

prove useful to determine the structure of peptido-mimetic

compounds leading to the emergence of chemical drugs desig-

nated to modulate specific activities of Hsp27 and aB-crystallin

and/or which can correct and mask specific mutations in these

chaperones. Hence, it is likely that in a near future drugs will

be available for clinical trials. In addition, the intense work

which is actually performed towards the eight other members

of the human small stress family of proteins and the fact that

most sHsps interact with each other and form homo- and het-

ero-oligomeric complexes may lead to the emergence of other

interesting therapeutic targets and strategies.
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